## 1.Overview of X7083/X7043/X7023

## 1-1 Introduction

X7083/X7043/X7023 is an LSI that generates a pulse for controlling the speed and positioning of pulse train input-type servo motors and stepping motors. X7083 enables 8-axis control, X7043 enables 4-axis control, X7023 enables 2-axis control.
This unit is comprised of an S-shaped or linear acceleration/deceleration pulse generator, a linear interpolation divider, an automatic deceleration point calculator based on trapezoidal or triangular drive, multi-counter and encoder inputs that can be used as the current position counter or deviation counter, a return-to-origin sensor interface, a limit sensor interface, a servo drive interface, an 8-bit general-purpose input, and an 8-bit generalpurpose output.
Since X7083/X7043/X7023 provides an interface with a host CPU, it can be used as a peripheral LSI.

## 1-2 Features

$\diamond$ CPU interface

- Applicable microcomputers:
- Address occupancy:

Data bit width:
Drive commands

- Index drive:

Continuous pulse drive:
Return-to-origin drive:

- Sensor positioning drive:
$\checkmark$ Drive modes
- Acceleration/deceleration mode:
- Deceleration start point:
- Synchronization mode:

Encoder counter

- Number of counters:

Bit length:

- Count inputs:
$\diamond$ Encoder converter inputs
- Number of channels:
- Input format:
- Multiplication:
$\checkmark$ Comparator
- Bit length:
- Comparison targets:
- Comparison methods:
- Comparison output:

I/O

80 series, 68 series, etc.
6 bits ( 64 bytes) for X7083, 5 bits ( 32 bytes) for X7043, and 4 bits (16 bytes) for X7023

8 bits

## S-shaped (sine, parabolic), linear

Automatic calculation, manual setting, offset setting
Multi-axis linear interpolation, sync start

## 2

24 bits/32 bits switchable
Internal pulse only, external-input pulses only, Internal pulse and external-input pulses

## 1 channel

2-clock, 2-phase clock with $90^{\circ}$ - phase error
1/2/4 multiplication

24 bits
Register and counter, counter and counter
$=$, >
1 point ( $=$ or $>$ ), only for X7043 and X7023

- Inputs:

Outputs 8

## $\diamond$ Other functions

- Independent setting functions for accelerator and decelerator

Timer function

- Input filtering function
- Interrupt function

I/O logic switching function

- Status functions
$\diamond$ Clock:
$\diamond$ Technology:
$\diamond$ Power source:Operating temperatures:
Package:
20.0 MHz (nax.), 16.384 MHz or 19.6608 MHz recommended


## CMOS

Internal voltage: $3.3 \mathrm{~V} \quad \mathrm{IO}$ voltage: 5 V or 3.3 V
0 to $+70{ }^{\circ} \mathrm{C}$
X7083
208-pin
X7043 LQFP $\quad 28 \times 28(\mathrm{~mm})$

## 1-3 Block Diagram

Figure 1-1: Block Diagram
Overall Block Diagram and I/O Signals


## Circuit Block Diagram for Axes \#1 to \#8



Only X7043 and X7023 have CP0-3, ERROR, and CMP.
X7083 has axes \#1 to \#8, X7043 axes \#1 to \#4, and X7023 axes \#1 to \#2.

## 1-4 Specifications List

Table 1-1: Specifications List

| Item | Specifications |
| :---: | :---: |
| Supply voltage | Internal voltage $3.3 \mathrm{~V} \pm 10 \% \quad \mathrm{I} / \mathrm{O}$ voltage $5 \mathrm{~V} \pm 10 \%$ or $3.3 \mathrm{~V} \pm$ 5\% |
| Input/output level | CMOS level |
| Max. input clock f) | 20.0 MHz (nax), 16.384 MHz or 19.6608 MHz recommended |
| Max. output frequency | Linear acceleration/deceleration: 5 Mpps <br> S-shaped acceleration/deceleration: 3.05 Mpps |
| Acceleration/deceleration time | Approx. 8 ms to 131 s <br> ( 16382 steps, $\mathrm{f}=16.384 \mathrm{MHz}$ ) |
| Output pulse count setting range ( $\mathrm{R}_{1}$ ) | 1 to $16,777,215$ |
| Deceleration start point setting range $\left(\mathrm{R}_{2}\right)$ | 0 to $16,777,215$ (manual setting) <br> -8388608 to 8388607 (auto-calculated offset setting) |
| Frequency multiplication ratio setting range $\left(\mathrm{R}_{0}\right)$ | 1 to 4095 |
| Frequency setting step count ( $\left.\mathrm{R}_{3}, \mathrm{R}_{4}\right)$ | Linear acceleration/deceleration, S-shaped acceleration/deceleration and deceleration point manual setting mode: 1 to 16383 <br> S-shaped acceleration/deceleration and deceleration start point automatic calculation mode: 1 to 10000 |
| Acceleration/deceleration rate setting range $\left(\mathrm{R}_{5}, \mathrm{R}_{6}\right)$ | 1 to 16383 |
| S-shaped section setting range ( $\mathrm{R}_{7}$ ) | 1 to 8191 |
| Sensor input sensitivity setting range (F) | 0 to 255 <br> Approx. 0.98 to $250 \mu \mathrm{~s}$ ( $\mathrm{f}=16.384 \mathrm{MHz}$ ) |
| Driver interface | Outputs: Clock output: Gate control/2-clock switchable, logic switchable <br>  1 -shot output: Approx. $1.9 \mu \mathrm{~s}(\mathrm{f}=16.384 \mathrm{MHz})$, logic switchable <br>  Servo ON output: General-purpose output <br> Inputs: Driver alarm input: 1 point per axis, logic switchable <br> Positioning end input: 1 point per axis, logic switchable |
| Sensor inputs | End limit inputs: 2 points, +/- directions, logic switchable <br> Slow-down inputs: 2 points, +/- directions, logic switchable <br> Slow-down/slow-down stop switchable <br> Origin input: $\quad 2$ points per axis, origin and Z phase, logic switchable <br> Mark sensor input: 1 point per axis, logic switchable |
| General-purpose inputs/outputs | Inputs: 8 points Outputs: 8 points |
| Encoder interface | Input: One channel per axis, 2 clocks, 1/2/4 multiplication |
| Other inputs/outputs | Sync start input: 1 point <br> Counter clear inputs: 1 point per axis <br> Comparator output: 1 point per axis (only for X7043 and X7023) |
| Operating temperatures | 0 to $+70^{\circ} \mathrm{C}$ |
| Storage temperatures | -65 to $+150{ }^{\circ} \mathrm{C}$ |
| Dimensions | X7083 208PIN LQFP $28 \times 28(\mathrm{~mm})$ <br> X7043 144 PIN LQFP $20 \times 20(\mathrm{~mm})$ <br> X7023 100PIN TQFP $14 \times 14 \mathrm{~nm})$ <br> Lead-free specification Sn-1 to 4 Bi solder   |

## 1-5 Package Dimension Diagram

Figure 1-2: Package Dimension Diagram (X7083)


Figure 1-3: Package Dimension Diagram (X7043)

$0.17 \pm 0.05$


Figure 1-4: Package Dimension Diagram (X7023)


## 1-6 Pin Layout, Terminal Description

## 1-6-1 Terminal Description

Table 1-2: Terminal Description

| Terminal No. |  |  | Signal | I/O | Logic | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X7083 | X7043 | X7023 |  |  |  |  |
| $\begin{gathered} 26,78, \\ 130,182 \end{gathered}$ | 54,126 | 37, 87 | VddINT | - |  | $+3.3 \mathrm{~V} \pm 0 \%$ power input. |
| $\begin{gathered} \hline 8,11,17,23, \\ 37,49,55,61, \\ 72,85,100, \\ 115,134, \\ 151,168, \\ 186,203 \end{gathered}$ | $\begin{gathered} 7,19,46, \\ 58,79,98, \\ 117,138 \end{gathered}$ | $\left\|\begin{array}{c} 7,18,44 \\ 54,73,94 \end{array}\right\|$ | VddIO | - |  | $+5 \mathrm{~V} \pm 10 \%$ or $3.3 \mathrm{~V} \pm 5 \%$ power input. |
| $\begin{gathered} 9,12,18,24, \\ 27,38,40,50, \\ 56,62,73,79, \\ 86,101,116, \\ 131,135, \\ 152,169, \\ 183,187, \\ 204 \end{gathered}$ | $\begin{gathered} 9,14,21, \\ 30,47,55, \\ 59,80,99, \\ 118,127, \\ 139 \end{gathered}$ | $\begin{gathered} 9,20,28, \\ 38,45 \\ 55,74 \\ 88,95 \end{gathered}$ | GND | - |  | 0 V power input. |
| 10 | 8 | 8 | CLK | I | + | Reference clock input. Max. input frequency 20 MHz . <br> Duty $50 \pm 0 \%$ |
| 25 | 20 | 19 | $\overline{\mathrm{RST}}$ | I | - | Rest signal. The LSI is reset when Low input of more than 3 reference clock periods is input. |
| 34 | 27 | 25 | $\overline{\mathrm{CS}}$ | I | - | Chip select signal. This LSI can be accessed when this pin goes Low. |
| 35 | 28 | 26 | $\overline{\mathrm{RD}}$ | I | - | Read enable signal. Data can be read out when $\overline{\mathrm{CS}}$ is Low and $\overline{\mathrm{RD}}$ is Low. |
| 36 | 29 | 27 | $\overline{\mathrm{WR}}$ | I | - | Write enable signal. Data can be loaded at the positivegoing edge of WR from Low to High while $\overline{\mathrm{CS}}$ is Low. |
| 33 | 26 | 24 | A0 |  |  |  |
| 32 | 25 | 23 |  |  |  |  |
| 31 30 | 24 | $22$ | A2 | I | + | 6-bit address bus from A0 LSB ) to A5 MSB). |
| $\begin{aligned} & 30 \\ & 29 \end{aligned}$ | $22$ |  | A4 |  |  |  |
| 28 | - | - |  |  |  |  |
| 22 | 18 | 17 | D0 |  |  |  |
| 21 | 17 | 16 | D1 |  |  |  |
| 20 | 16 | 15 | D2 |  |  |  |
| 19 | 15 | 14 | D3 | I/O | + | 8-bit 2-directional data bus from D0 (LSB) to D7 MSB) |
| 16 | 13 | 13 | D4 |  |  | output buffer of these pins are tri-state buffers. |
| 15 | 12 | 12 | D5 |  |  |  |
| 14 | 11 | 11 | D6 |  |  |  |
| 13 | 10 | 10 | D7 |  |  |  |

Table 1-2: Terminal Description

| Terminal No. <br> X7083 |  |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |

Table 1-2: Terminal Description

| Terminal No. |  |  | Signal | I/O | Logic | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X7083 | X7043 | X7023 |  |  |  |  |
| 200 | 133 | 89 | $\overline{-S L D 1}$ | I | +- | - direction slow-down limit input. Slow-down and slowdown stop can be switched with the input mode setting register. The input sensitivity can be set to between 16 and 4096 times the reference clock period by means of the input sensitivity setting register. Level or edge operation. |
| 181 | 112 | 68 | $\overline{-S L D 2}$ |  |  |  |
| 164 | 93 | - | $\overline{-S L D 3}$ |  |  |  |
| 147 | 74 | - | -SLD4 |  |  |  |
| 128 | - | - | -SLD5 |  |  |  |
| 111 | - | - | $\underline{\text {-SLD6 }}$ |  |  |  |
| 94 | - | - | -SLD7 |  |  |  |
| 75 | - | - | -SLD8 |  |  |  |
| 206 | 137 | 93 | $\overline{\text { ORG1 }}$ | I | +- | Origin sensor input. With the return-to-coordinate-basicorigin drive, the return-to-origin operation is based on either the $\overline{\text { ORG }}$ input alone or the $\overline{\text { ORG }}$ and $\overline{\text { EZ }}$ (Encoder phase Z) inputs. <br> The input sensitivity is 1 or 16 times the reference clock period. |
| 189 | 116 | 72 | $\overline{\text { ORG2 }}$ |  |  |  |
| 170 | 97 | - | $\overline{\text { ORG3 }}$ |  |  |  |
| 153 | 78 | - | $\overline{\text { ORG4 }}$ |  |  |  |
| 136 | - | - | $\overline{\text { ORG5 }}$ |  |  |  |
| 117 | - | - | $\overline{\text { ORG6 }}$ |  |  |  |
| 98 | - | - | ORG7 |  |  |  |
| 81 | - | - | ORG8 |  |  |  |
| 207 | 140 | 96 | EZ1 | I | +- | Encoder phase Z input. With the return-to-origin operation using the $\overline{\text { ORG }}$ and $\overline{\mathrm{EZ}}$ inputs according to the return-to-coordinate-basic-origin drive, the operation stops when the $\overline{\mathrm{EZ}}$ input is activated after deceleration, started by $\overline{\text { ORG }}$ going active, has completed. The input sensitivity is an edge operation based on sampling at the reference clock period. |
| 190 | 119 | 75 | EZ2 |  |  |  |
| 171 | 100 |  | EZ3 |  |  |  |
| 154 | 81 | - | $\overline{\text { EZ4 }}$ |  |  |  |
| 137 | - | - | $\overline{\text { EZ5 }}$ |  |  |  |
| 118 | - | - | $\overline{\text { EZ6 }}$ |  |  |  |
| 99 | - | - | $\overline{\text { EZ7 }}$ |  |  |  |
| 82 | - | - | $\overline{\text { EZ8 }}$ |  |  |  |
| 3 | 144 | 100 | INP1 | I | +- | Servo driver positioning completion input. If the initial setting register has been set to turn the stop flag ON at the completion of positioning, the operation completion flag is set ON when the INP input becomes active after the completion of the pulse output. In case of normal stop interrupt, the INT output becomes activate similarly. |
| 194 | 123 | 79 | $\overline{\text { INP2 }}$ |  |  |  |
| 175 | 104 | - | $\overline{\text { INP3 }}$ |  |  |  |
| 158 | 85 | - | $\overline{\text { INP4 }}$ |  |  |  |
| 141 | - | - | $\overline{\text { INP5 }}$ |  |  |  |
| 122 | - |  | $\overline{\text { INP6 }}$ |  |  |  |
| 105 | - | - | $\overline{\text { INP7 }}$ |  |  |  |
| 88 | - |  | $\overline{\text { INP8 }}$ |  |  |  |
| 199 | 132 | 86 | $\overline{\text { MARK1 }}$ | I | +- | Sensor positioning start input. When the sensor positioning drive is used, the set number of pulses are output when the $\overline{\text { MARK }}$ input becomes active. The input sensitivity is 1 or 16 times the reference clock period. |
| 180 | 111 | 67 | $\overline{\text { MARK2 }}$ |  |  |  |
| 163 | 92 |  | $\overline{\text { MARK3 }}$ |  |  |  |
| 146 | 73 | - | $\overline{\text { MARK4 }}$ |  |  |  |
| 127 | - | - | $\overline{\text { MARK5 }}$ |  |  |  |
| 110 | - | - | $\overline{\text { MARK6 }}$ |  |  |  |
| 93 | - |  | $\overline{\text { MARK7 }}$ |  |  |  |
| 74 | - |  | $\overline{\text { MARK8 }}$ |  |  |  |

Table 1-2: Terminal Description

| Terminal No. |  |  | Signal | I/O | Logic | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X7083 | X7043 | X7023 |  |  |  |  |
| 48 | 45 | 43 | IN0 | I | - | $\overline{\mathrm{IN} 0}$ (LSB) to $\overline{\mathrm{IN} 7}$ (MSB) form an 8-bit parallel input. Interrupt is possible at the change of $\overline{\mathrm{IN} 0}$ from High to Low. |
| 47 | 44 | 42 | $\overline{\mathrm{IN} 1}$ |  |  |  |
| 46 | 43 | 41 | IN2 |  |  |  |
| 45 | 42 | 40 | IN3 |  |  |  |
| 44 | 41 | 39 | IN4 |  |  |  |
| 43 | 40 | 36 | IN5 |  |  |  |
| 42 | 39 | 35 | $\overline{\text { IN6 }}$ |  |  |  |
| 41 | 38 | 34 | $\overline{\text { IN7 }}$ |  |  |  |
| 71 | 64 | 58 |  | I | - | Multi-counter A is cleared to 0 when $\overline{\text { CLRA }}$ is Low. <br> The level and edge operations can be switched |
| 70 | 6362 | 57 |  |  |  |  |
| 69 |  |  | $\frac{\overline{\text { CLRA2 }}}{\overline{\text { CLRA3 }}}$ |  |  |  |
| 68 | 61 | - | $\begin{aligned} & \text { CLRA3 } \\ & \hline \text { CLRA4 } \\ & \hline \end{aligned}$ |  |  |  |
| 67 | - | - | $\frac{\text { CLRA4 }}{\text { CLRA5 }}$ |  |  |  |
| 66 | - | - | $\frac{\text { CLRA5 }}{\text { CLRA6 }}$ |  |  |  |
| 65 | - | - | $\frac{\text { CLRA6 }}{\text { CLRA7 }}$ |  |  |  |
| 64 | - | - | $\frac{\text { CLRA7 }}{\text { CLRA8 }}$ |  |  |  |
| 7 | 4 | 4 | $\overline{\overline{\text { POUT1 }}}$ | O | +- | Instruction pulse output. Outputs the CW pulse when the 2pulse method is used or outputs the pulse output when the pulse/direction method is used. The output logic can be switched with the output logic register. |
| 198 | 129 | 83 |  |  |  |  |
| 179 | 108 |  | POUT3 |  |  |  |
| 162 | 89 | - | POUT4 |  |  |  |
| 145 | - | - | POUT5 |  |  |  |
| 126 | - | - | POUT6 |  |  |  |
| 109 | - | - | $\overline{\text { POUT7 }}$ |  |  |  |
| 92 | - |  | POUT8 |  |  |  |
| 6 | 3 | 3 | $\overline{\text { PDIR1 }}$ | O | +- | Direction output or instruction pulse output. Outputs the CCW pulse when the 2-pulse method is used or outputs the direction output when the pulse/direction method is used. The output logic can be switched with the output logic register. |
| 197 | 128 | 82 | $\overline{\text { PDIR2 }}$ |  |  |  |
| 178 | 107 |  | $\overline{\text { PDIR3 }}$ |  |  |  |
| 161 | 88 |  | $\overline{\text { PDIR4 }}$ |  |  |  |
| 144 | - | - | PDIR5 |  |  |  |
| 125 | - | - | PDIR6 |  |  |  |
| 108 | - | - | PDIR7 |  |  |  |
| 91 | - |  | PDIR8 |  |  |  |
| 4 | 1 | 1 | $\overline{\text { CLR1 }}$ | O | +- | 1-shot or general-purpose output for clearing the deviation counter of the servo driver. The 1 -shot and general-purpose outputs can be switched with the initial setting register of the output. The pulse duration of shot is 32 times the reference clock period. The output logic can be switched with the output logic register. |
| 195 | 124 | 80 | CLR2 |  |  |  |
| 176 | 105 |  | CLR3 |  |  |  |
| 159 | 86 | - | $\overline{\text { CLR4 }}$ |  |  |  |
| 142 | - | - | $\overline{\text { CLR5 }}$ |  |  |  |
| 123 | - | - | $\overline{\text { CLR6 }}$ |  |  |  |
| 106 | - | - | $\overline{\text { CLR7 }}$ |  |  |  |
| 89 | - |  | $\overline{\text { CLR8 }}$ |  |  |  |

Table 1-2: Terminal Description


Table 1-2: Terminal Description

| Terminal No. |  |  | Signal | I/O | Logic | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X7083 | X7043 | X7023 |  |  |  |  |
| 208 | 141 | 97 | $\overline{\text { EB1 }}$ | I | - | Phase B input of encoder input. The 2 -clock method and the $1 / 2 / 4$ multiplication of the $90^{\circ}$ phase difference can be selected with the initial setup of the encoder input/output. |
| 191 | 120 | 76 | EB2 |  |  |  |
| 172 | 101 |  | $\overline{\text { EB3 }}$ |  |  |  |
| 155 | 82 | - | EB4 |  |  |  |
| 138 | - | - | EB5 |  |  |  |
| 119 | - | - |  |  |  |  |
| 102 | - |  |  |  |  |  |
| 83 | - |  | EB8 |  |  |  |
|  | 37 | 33 | $\overline{\text { CMP1 }}$ | O | - | Comparison output between a comparator register and counter (A, B or C) or between counters. $=$ and $>$ can be switched with the comparator control register. This function is not available for X7083. |
|  | 36 | 32 | $\overline{\text { CMP2 }}$ |  |  |  |
|  | 35 |  | $\overline{\text { CMP3 }}$ |  |  |  |
|  | 34 |  | $\overline{\text { CMP4 }}$ |  |  |  |
| 63 | 60 | 56 | $\overline{\text { SYNC }}$ | I | - | Sync start input. When the sync start mode is activated, the pulse starts to be output when $\overline{\text { SYNC }}$ changes from High to Low. |
| - | $\begin{aligned} & 72 \\ & 71 \\ & 70 \\ & 69 \end{aligned}$ | $\begin{aligned} & 66 \\ & 65 \\ & 64 \\ & 63 \end{aligned}$ | $\frac{\overline{\mathrm{CP}} 0}{\overline{\mathrm{CP} 1}}$ | I/O | - | Linear interpolation status inputs/outputs. When linear interpolation is performed by using several units of the LSI, connect $\overline{\mathrm{CP} 0}, \overline{\mathrm{CP} 1}, \overline{\mathrm{CP} 2}$ and $\overline{\mathrm{CR} 3}$ of the LSIs respectively with wired OR. The output buffer is an open-drain buffer. The functions of the terminals are listed below. <br> This terminal is not available for X7083. |
| - | $\begin{gathered} \hline 32,33,65, \\ 66,67,68 \\ \hline \end{gathered}$ | $\begin{array}{\|l\|} \hline 30,31,59, \\ 60,61,62 \end{array}$ | NC |  |  | No connection. |

[Note] 1. INT is an open drain output.
2. $\overline{\text { ALM }},+$ EL $, ~-E L, ~+S L D, ~-S L D, ~ \overline{O R G}, \overline{E Z}, \overline{\text { INP }}, \overline{M A R K}, \overline{\text { IN0-7 }}, \overline{\mathrm{EA}}, \overline{\mathrm{EB}}, \overline{\text { SYNC }}$, and $\overline{\text { CLRA }}$ are inputs with built-in pull-up resistance $75 \mathrm{k} \Omega$ ).
3. $\overline{\mathrm{CP} 0-3}$ is an input/output with built-in pull-up resistance $75 \mathrm{k} \Omega$ ).

## 1-6-2 Pin Lay-out

Figure 1-5:Pin Lay-out


## 

|  |  |  |
| :---: | :---: | :---: |
| MOVE3 | 109 －イーーーーーーー | 72 CP0 |
| ERROR3 | 110 | 71 CP1 |
| MARK2 | 111 | 70 CP2 |
| －SLD2 | 112 | 69 CP3 |
| ＋SLD2 | 113 | 68 NC |
| －EL2 | 114 | 67 NC |
| ＋EL2 | 115 | 66 NC |
| ORG2 | 116 | 65 NC |
| VddIO | 117 | 64 CLRA1 |
| GND | 118 | 63 CLRA2 |
| EZ2 | 119 | 62 CLRA3 |
| EB2 | 120 | 61 CLRA4 |
| EA2 | 121 | 60 SYNC |
| ALM2 | 122 | 59 GND |
| INP2 | 123 | 58 VddIO |
| CLR2 | 124 | 57 OUT0 |
| SON2 | 125 | 56 OUT1 |
| VddInT | 126 | 55 GND |
| GND | 127 X $\times 1043$ | 54 VddINT |
| PDIR2 | 128 N（O43 | 53 OUT2 |
| POUT2 | 129 | 52 OUT3 |
| MOVE2 | 130 | 51 OUT4 |
| ERROR2 | 131 | 50 OUT5 |
| MARK1 | 132 | 49 OUT6 |
| －SLD1 | 133 | 48 OUT7 |
| ＋SLD1 | 134 | 47 GND |
| －EL1 | 135 | 46 VddIO |
| ＋EL1 | 136 | 45 IN0 |
| ORG1 | 137 | 44 IN1 |
| VddIO | 138 | 43 IN2 |
| GND | 139 | 42 IN3 |
| EZ1 | 140 | 41 IN4 |
| EB1 | 141 | 40 IN5 |
| EA1 | 142 | 39 IN6 |
| ALM1 | 143 | 38 IN7 |
| INP1 | 144 | 37 CMP1 |



## 1-7 System Configuration

Figure 1-6: Example of a Servo Motor Interface


Figure 1-7: Example of a Stepping Motor Interface


## 1-8 Example of Interfacing with CPU

This LSI uses a bus interface which can be connected to a 80 -series processor through the 8 -bit data bus from D0 to D7. However, the LSI can also be interfaced with a 68 -series processor providing a simple external circuit.

## 1-8-1 Example of Interfacing with Z80

Figure 1-8: Example of Interfacing with Z80


## 1-8-2 Example of Interfacing with 68000

Figure 1-9: Example of Interfacing with 68000


## 2. Address Allocation and Data Read/Write

## 2-1 Address Allocation

Table 2-1: Address Allocation Table

| A5 | A4 | A3 | A2 | A1 | A0 | Write | Read |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | Axis \#1 register selector | Axis \#1 register selector |
| 0 | 0 | 0 | 0 | 0 | 1 | Axis \#1 write data 1 (bit0-7) | Axis \#1 read data 1 (bit0-7) |
| 0 | 0 | 0 | 0 | 1 | 0 | Axis \#1 write data 2 (bit8-15) | Axis \#1 read data 2 (bit8-15) |
| 0 | 0 | 0 | 0 | 1 | 1 | Axis \#1 write data 3 (bit16-23) | Axis \#1 read data 3 (bit16-23) |
| 0 | 0 | 0 | 1 | 0 | 0 | Axis \#1 write data 4 (bit24-31) | Axis \#1 read data 4 (bit24-31) |
| 0 | 0 | 0 | 1 | 0 | 1 | Reserved by system (access prohibited) | Interrupt axis status |
| 0 | 0 | 0 | 1 | 1 | 0 | Reserved by system (access prohibited) | Axis \#1 interrupt state status |
| 0 | 0 | 0 | 1 | 1 | 1 | Axis \#1 command | Axis \#1 operation state status |
| 0 | 0 | 1 | 000b to 111b |  |  | Axis \#2 access area Same allocation as axis \#1 |  |
| 0 | 1 | 0 | 000b to 111b |  |  | Axis \#3 access area Same allocation as axis \#1 |  |
| 0 | 1 | 1 | 000b to 111b |  |  | Axis \#4 access area Same allocation as axis \#1 |  |
| 1 | 0 | 0 | 000b ~ 111b |  |  | Axis \#5 access area Same allocation as axis \#1 |  |
| 1 | 0 | 1 | 000b ~ 111b |  |  | Axis \#6 access area Same allocation as axis \#1 |  |
| 1 | 1 | 0 | 000b ~ 111b |  |  | Axis \#7 access area Same allocation as axis \#1 |  |
| 1 | 1 | 1 | 000b $\sim 111 \mathrm{~b}$ |  |  | Axis \#8 access area Same allocation as axis \#1 |  |

[Note] 1. The Write cycles require the time of 2 reference clock periods (recovery time) to write data.
Figure 2-1: Write Cycle and Recovery Time

2. Parameters other than the command write, interrupt status monitoring and operation status monitoring parameters, and the counter initial setting can be read or written in Write data 1 to 4 or Read data 1 to 4 after the register selector has been set.
3. When an item of Write data is 2 bytes or more, the write operation begins with the lowest data and goes on toward the higher data. The data is written simultaneously when the highest byte has been written.
4. When an item of read data is 2 bytes or more, it is read after writing the register selector. The data is latched in the auxiliary buffer for simultaneous read at the moment the register selector is written. The read operation is performed continuously.

## 3. Command Types and Functions

## 3-1 Command Write

Writes a 1-byte command code to the command register.

## 3-2 Command List

Table 3-1: Command List


| Command <br> code <br> (hex) | Type | Description |
| :---: | :---: | :---: |
| 0Ah | Sensor positioning drive I (+ direction) | Positioning drive from the position where the <br> $\overline{\text { MARK }}$ input terminal goes active. Acceleration starts from the beginning of the drive. $\underset{\substack{\text { MAXIMM } \\ \text { SPEED }}}{\text { SPEED }}$ |
| 0Bh | Sensor positioning drive I (-direction) |  |
| 0Ch | Sensor positioning drive II (+ direction) | Positioning drive from the position where the MARK input terminal goes active. Acceleration starts when the MARK input goes active. |
| 0Dh | Sensor positioning drive II (- direction) |  |
| 0Eh | Sensor positioning drive III (+ direction) | Positioning drive from the position where the MARK input terminal goes active. Acceleration and deceleration are not performed. |
| 0Fh | Sensor positioning drive III (- direction) |  |
| 12h | Return-to-origin I (+ direction) | Return-to-origin accompanied with acceleration and deceleration. The drive decelerates and stops when $\overline{\text { ORG }}$ goes active. |
| 13h | Return-to-origin I (- direction) |  |


| Command <br> code <br> (hex) | Type | Description |
| :---: | :---: | :---: |
| 14h | Return-to-origin II (+ direction) | Return-to-origin accompanied with acceleration and deceleration. The drive decelerates when ORG goes active and stops when $\overline{E Z}$ goes active after reaching startup speed. $\qquad$ <br> MAXI MUM |
| 15h | Return-to-origin II (- direction) |  |
| 16h | Return-to-origin III (+ direction) | Return-to-origin at the startup speed. Immediate stop occurs when ORG goes active. <br> SPEED |
| 17h | Return-to-origin III (- direction) |  |
| 18h | Return-to-origin IV (+ direction) | Return-to-origin at the startup speed. Immediate stop occurs when $\overline{\mathrm{EZ}}$ goes active after $\overline{\mathrm{ORG}}$ has been activated. <br> SPEED |
| 19h | Return-to-origin IV (- direction) |  |



| Command <br> code <br> (hex) | Type | Description |
| :---: | :---: | :---: |
| 50h | Counter A clear command | Clears counter A to 0 . |
| 51h | Counter B clear command | Clears counter B to 0 |
| A0h | Operation completion flag reset command | The operation completion flag is reset when this command is written while the flag is set. When the operation completion flag and error flag are set, this command resets both of them. As the operation cannot be restarted by writing a drive command while the operation completion flag is set, the flag must be reset using this command before writing a drive command. |
| A2h | Deceleration start interrupt flag reset command | The deceleration start interrupt flag is reset when this command is written while the flag is set. |
| A3h | ISO-speed interrupt flag reset command | The ISO-speed interrupt flag is reset when this command is written while the flag is set. |
| A5h | Maximum acceleration interrupt flag reset command | The maximum acceleration interrupt flag is reset when this command is written while the flag is set. |
| A8h | Counter A carry interrupt flag reset | The counter A carry interrupt flag will be reset if this command is written while the flag is set. |
| A9h | Counter A borrow interrupt flag reset | The counter A borrow interrupt flag will be reset if this command is written while the flag is set. |
| AAh | Counter B carry interrupt flag reset | The counter B carry interrupt flag will be reset if this command is written while the flag is set. |
| ABh | Counter B borrow interrupt flag reset | The counter B borrow interrupt flag will be reset if this command is written while the flag is set. |
| ADh | Counter C borrow interrupt flag reset | The counter C borrow interrupt flag will be reset if this command is written while the flag is set. |
| B0h | ORG sensor interrupt flag reset | The ORG sensor interrupt flag will be reset if this command is written while the flag is set. |
| B1h | $\overline{\mathrm{EZ}}$ sensor interrupt flag reset | The EZ sensor interrupt flag will be reset if this command is written while the flag is set. |
| B2h | $\overline{\mathrm{IN} 0}$ input interrupt flag reset | The IN0 input interrupt flag will be reset if this command is written while the flag is set. |
| B3h | $\overline{\text { MARK }}$ input interrupt flag reset | The MARK input interrupt flag will be reset if this command is written while the flag is set. |
| B8h | Comparator ( $\mathrm{P}=\mathrm{Q}$ ) interrupt flag reset | The comparator $(\mathrm{P}=\mathrm{Q})$ interrupt flag will be reset if this command is written while the flag is set. |
| B9h | Comparator ( $\mathrm{P}>\mathrm{Q}$ ) interrupt flag reset | The comparator $(\mathrm{P}>\mathrm{Q})$ interrupt flag will be reset if this command is written while the flag is set. |


| Command <br> code <br> (hex) | Type | Description |
| :---: | :---: | :---: |
| E0h | $\overline{\text { OUT0 }}$ set |  |
| E1h | $\overline{\text { OUT1 }}$ set |  |
| E2h | $\overline{\text { OUT2 }}$ set |  |
| E3h | $\overline{\text { OUT3 }}$ set | Bit operation commands of the general-purpose output. |
| E4h | $\overline{\text { OUT4 }}$ set | Set the $\overline{\text { OUT0-7 }}$ terminals to Low respectively. |
| E5h | $\overline{\text { OUT5 }}$ set |  |
| E6h | OUT6 set |  |
| E7h | $\overline{\text { OUT7 }}$ set |  |
| EEh | SON set | Sets servo ON output terminal $\overline{\text { SON }}$ to Low. |


| Command code (hex) | Type | Description |
| :---: | :---: | :---: |
| EFh | CLR output | When 1-shot is set, outputs the pulse for 32 reference clock periods from the CLR terminal. This terminal should be set to ON when the general-purpose output is set. |
| F0h | $\overline{\text { OUT0 }}$ reset |  |
| F1h | $\overline{\text { OUT1 }}$ reset |  |
| F2h | $\overline{\text { OUT2 }}$ reset |  |
| F3h | $\overline{\text { OUT3 }}$ reset | Bit operation commands of the general-purpose output. Set |
| F4h | $\overline{\text { OUT4 }}$ reset | the OUT0-7 terminals to High respectively. |
| F5h | $\overline{\text { OUT5 }}$ reset |  |
| F6h | $\overline{\text { OUT6 }}$ reset |  |
| F7h | $\overline{\text { OUT7 }}$ reset |  |
| FEh | $\overline{\text { SON }}$ reset | Sets servo ON output terminal $\overline{\text { SON }}$ to High. |
| FFh | $\overline{\mathrm{CLR}}$ reset | $\overline{\mathrm{CLR}}$ should be reset to OFF when the general-purpose input is set. |

## 4. Registers and Internal Counters

## 4-1 Register and Counter List

Table 4-1: Register and Counter List

| Select code (hex) | Register and counter | Effective bit length | Setting range | Type | Higher address read /write |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 00h | Frequency multiplication ratio setting register ( $\mathrm{R}_{0}$ ) | 12 | 1 to 4,096 | Parameter | 2- byte batch R/W |
| 01h | Output pulse count setting register (counter C/R $R_{1}$ ) | 24 | Oto 16,777,215 | Parameter | 3 byte batch R/W |
| 02h | Deceleration start point setting register (counter $\mathrm{D} / \mathrm{R}_{2}$ ) | 24 | $\begin{gathered} \hline \text { O to } 16,777,215 \\ -8,388,608 \text { to } \\ 8,388,607 \\ \hline \end{gathered}$ | Parameter | 3- byte batch R/W |
| 03h | Startup frequency setting register ( $\mathrm{R}_{3}$ ) | 14 | $\begin{aligned} & 1 \text { to } 16,383^{* 1} \\ & 1 \text { to } 10,000{ }^{* 2} \end{aligned}$ | Parameter | 2- byte batch R/W |
| 04h | Maximum frequency setting register ( $\mathrm{R}_{4}$ ) | 14 | $\begin{aligned} & 1 \text { to } 16,383^{* 1} \\ & 1 \text { to } 10,000{ }^{* 2} \end{aligned}$ | Parameter | 2- byte batch R/W |
| 05h | Accelerate rate setting register ( $\mathrm{R}_{5}$ ) | 14 | 1 to 16,383 | Parameter | 2- byte batch R/W |
| 06h | Deceleration rate setting register ( $\mathrm{R}_{6}$ ) | 14 | 1 to 16,383 | Parameter | 2-byte batch R/W |
| 07h | S- shaped acceleration/deceleration section setting register ( $\mathrm{R}_{7}$ ) | 13 | 1 to 8,191 | Parameter | 2- byte batch R/W |
| 08h | Linear interpolation base setting register ( $\mathrm{R}_{8}$ ) | 24 | 1 to 16,777,215 | Parameter | 3 byte batch R/W |
| 21h | Counter A | 24/32 |  | Counter | 3/4 byte batch R/W |
| 22h | Counter B | 24/32 |  | Counter | 3/4 byte batch R/W |
| 23h | Frequency read | 14 |  | Frequency | 2- byte batch RD |
| 30h | Comparator register | 24 | $\begin{gathered} \hline 0 \text { to } 16,777,215 \\ -8,388,608 \text { to } \\ 8,388,607 \\ \hline \end{gathered}$ | Comparator | 3 byte batch R/W |
| 40h | Batch general- purpose output setting $\overline{\text { QUTO }}$ to 7) | 8 |  | I/O | 1- byte R/W |
| 50h | Pulse output initial setting register | 4 |  | Initial setting | 1- byte R/W |
| 51h | Encoder input/output initial setting register | 5 |  | Initial setting | 1- byte R/W |
| 52h | Counter A initial setting register | 7 |  | Initial setting | 1- byte R/W |
| 53h | Counter B initial setting register | 7 |  | Initial setting | 1- byte R/W |
| 54h | Input initial setting register | 6 |  | Initial setting | 1- byte R/W |
| 55h | Input logic initial setting register | 9 |  | Initial setting | 2-byte individual R/W |
| 56h | Input filter initial setting register (F) | 8 |  | Initial setting | 1- byte R/W |
| 57h | Output initial setting register | 1 |  | Initial setting | 1- byte R/W |
| 58h | Output logic initial setting register | 6 |  | Initial setting | 1- byte R/W |
| 60h | Operation control mode setting register | 6 |  | Control mode | 1- byte R/W |
| 61h | Counter A control mode setting register | 2 |  | Control mode | 1- byte R/W |
| 62h | Counter B control mode setting register | 2 |  | Control mode | 1- byte R/W |
| 63h | CLR output control mode setting register | 2 |  | Control mode | 1- byte R/W |
| 64h | Comparator control mode setting register | 6 |  | Control mode | 1- byte R/W |
| 70h | Pulse oscillation interrupt mask register | 5 |  | Interrupt | 1- byte R/W |
| 71h | Counter interrupt mask register | 5 |  | Interrupt | 1- byte R/W |
| 72h | Sensor interrupt mask register | 4 |  | Interrupt | 1- byte R/W |
| 73h | Comparator interrupt mask register | 2 |  | Interrupt | 1- byte R/W |
| EOh | Pulse oscillation interrupt flag register | 5 |  | Interrupt | 1- byte RD |
| E1h | Counter interrupt flag register | 5 |  | Interrupt | 1- byte RD |
| E2h | Sensor interrupt flag register | 4 |  | Interrupt | 1- byte RD |
| E3h | Comparator interrupt flag register | 2 |  | Interrupt | 1- byte RD |


| Select code <br> (hex) | Register and counter | Effective <br> bit length | Setting range | Type | Higher address read <br> /write |
| :---: | :--- | :---: | :---: | :---: | :---: |
| FOh | Sensor status register | 8 |  | Status | 2- byte individual <br> RD |
| F1h | Normal stop factor status register | 6 |  | Status | 1- byte RD |
| F2h | Error stop factor status register | 3 |  | Status | 1-byte RD |
| F3h | General- purpose input status register | 8 |  | Status | 1-byte RD |
| F4h | Comparator status register | 2 |  | Status | 1- byte RD |

${ }^{*}$ : Linear acceleration/deceleration mode or deceleration start point manual setting mode.
*2:S-shaped acceleration/deceleration mode or deceleration start point automatic calculation mode.
R/W: Read and Write RD: Read only

## 4-2 Read/Write of Registers and Counters

The reading/writing of the registers and counters in Table 4-1 writes the select code to the register selector in Table 2-1 Address Allocation Table, and reads or writes data 1 to 4.

## 4-2-1 Read/Write of a 1-byte Register

To read a register, write the select code in the register selector and read data from read data 1.
To write a register, write the select code in the register selector and write data in write data 1.

## 4-2-2 Read/Write of a 2-byte Register

To read a register, write the select code in the register selector, read the lower byte (bits 0 to 7 ) from read data 1 , and then read the higher byte (bits 8 to 15 ) from read data 2 .
To write a register, write the select code in the register selector, write the lower byte (bits 0 to 7 ) write data 1 , and then write the higher byte (bits 8 to 15 ) in write data 2 .

## 4-2-3 Read/Write of a 3-byte Register or Counter

To read a register or counter, write the select code in the register selector, read the lowest byte (bits 0 to 7 ) from read data 1, then read the intermediate byte (bits 8 to 15 ) from read data 2, and read the highest byte (bits 16 to 23) from read data 3.

To write a register or counter, write the select code in the register selector, write the lowest byte (bits 0 to 7 ) in write data 1 , then write the intermediate byte (bits 8 to 15 ) in write data 2 , and write the highest byte (bits 16 to $23)$ in write data 3.

## 4-2-4 Read/write of a 4-byte Counter

To read a 4-byte counter, write the select code in the register selector, read the lowest byte (bits 0 to 7 ) from read data 1 , then read the intermediate byte (bits 8 to 15 ) from read data 2 , read the next intermediate byte (bits 16 to 23) from read data 3, and read the highest byte (bits 24 to 31 ) from read data 4.

To write data in a 4-byte counter, write the select code in the register selector, write the lowest byte (bits 0 to 7 ) in write data 1 , then write the intermediate byte (bits 8 to 15 ) in write data 2, write the next intermediate byte (bits 16 to 23 ) in write data 3, and write the highest byte (bits 24 to 31 ) in write data 4.

## 5. Parameters Related to Pulse Output

The LSI has 9 parameters for use in pulse output and timer operations. These parameters can be set with parameter registers $\mathrm{R}_{0}$ to $\mathrm{R}_{8}$.

## 5-1 Parameter Types

## 5-1-1 Frequency Multiplication Ratio Setting Register (Register $\mathbf{R}_{0}$ )

Register $\mathrm{R}_{0}$ is used to set the multiplication range of the output frequency. The setting range is between 1 and 4096, but it should be set at 0 for 4096 . Table $5-1$ shows the setting, multiplication ratio [pps/step] and output frequency range of register $\mathrm{R}_{0}$.

Table 5-1: Frequency Multiplication Ratio and Output Frequency Range (Reference clock f=1 6.384 MHz)

| $\mathrm{R}_{0}$ | Multiplication ratio $\mathrm{pps} /$ <br> step] | Output frequency range pps$]$ | Linear acceleration/ <br> deceleration |
| :---: | :---: | :---: | :---: |
|  |  | 0.1 to $1,638.3$ | S-shaped acceleration/ <br> deceleration |
| 250 | 1 | 1 to 16,383 | 0.1 to 1,000 |
| 50 | 5 | 5 to 81,915 | 1 to 10,000 |
| 10 | 25 | 25 to 409,575 | 5 to 50,000 |
| 1 | 250 | 250 to $4,095,750$ | 25 to 250,000 |

## 5-1-2 Output Pulse Count Setting Register (Register $\mathbf{R}_{\mathbf{1}}$ )

Register $\mathrm{R}_{1}$ is used to set the number of output pulses. As register $\mathrm{R}_{1}$ is also common as counter C, writing register $\mathrm{R}_{1}$ results in presetting counter C . The value of counter C when the pulse output is forced to stop in the middle is (register $R_{1}$ set value - output pulse count). When outputting only the remaining number of pulses the next time, there is no need to reset. In other cases, the $\mathrm{R}_{1}$ register must be set each time.

## 5-1-3 Deceleration Start Point Setting Register (Register $\mathbf{R}_{\mathbf{2}}$ )

Although the LSI is provided with the automatic deceleration start point calculation mode, the deceleration start point can be set manually or the offset for it can be set by writing data in register $\mathrm{R}_{2}$.
Register $R_{2}$ is also common as counter D , but the count operation is not performed when the register is used in the deceleration start point manual setting mode.

## 5-1-4 Startup Frequency Setting Register (Register $\mathbf{R}_{\mathbf{3}}$ )

This is the parameter register for determining the frequency at the start and end of pulse output.

## 5-1-5 Maximum Frequency Setting Register (Register $\mathbf{R}_{\mathbf{4}}$ )

This is the parameter register determining the maximum frequency of the pulse output. In the linear acceleration/ deceleration and deceleration start point automatic calculation modes, it can be rewritten even during pulse output. In the case of $S$-shaped acceleration/deceleration, overwriting in the middle is possible during constant speed in continuous mode and deceleration start point manual setting mode.

## 5-1-6 Acceleration Rate Setting Register (Register $\mathrm{R}_{5}$ )

This is the parameter register for determining the acceleration rate.

## 5-1-7 Deceleration Rate Setting Register (Register $\mathbf{R}_{6}$ )

This is the parameter register for determining the deceleration rate. Registers $\mathrm{R}_{5}$ and $\mathrm{R}_{6}$ should be set to the same value for the deceleration start point automatic calculation mode.

## 5-1-8 S-shaped Acceleration/Deceleration Section Setting Register (Register $\mathbf{R}_{\mathbf{7}}$ )

The S-shaped acceleration/deceleration sections refer to sections Tsg shown in Figure 5-1. In the sections between $R_{3}$ and $\left.R_{3}+R_{7}\right)$ and between $\left(R_{4}-R_{7}\right)$ and $R_{4}$, the speed varies by drawing $S$-shaped curves. The set value of register $\mathrm{R}_{7}$ should be no more than $\left(\mathrm{R}_{4}-\mathrm{R}_{3}\right) / 2$. The register need not be set when the S -shaped acceleration/ deceleration are not used.

Figure 5-1:S-shaped Acceleration/Deceleration Condition

## 5-1-9 Linear Interpolation Base Setting Register (Register $\mathrm{R}_{8}$ )

When using multiple axes or more than one LSI to carry out linear interpolation drive, set the register $\mathrm{R}_{1}$ setting value of the axes with the greatest amount of movement in register $\mathrm{R}_{8}$. There is no need to set it if linear interpolation drive will not be used.

## 5-2 Parameter Calculation Formulae



Table 5-2: Parameter Calculation Formulae

| Speed resolution <br> factor] <br> K pps/step] | $K=\frac{f}{65,536 \times R_{0}} \quad f:$ Refer ence cl ock fr equency [ Hz ] |
| :---: | :---: |
| $\begin{aligned} & \text { Startup frequency } \\ & \text { V pps] } \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { Stand al one } \\ \text { node: } \end{array} \quad V=\frac{f \times R_{3}}{65,536 \times R_{0}} \quad \begin{array}{l} \text { Li near inter pol ati on } V=\frac{f \times R_{3} \times R_{1}}{65,536 \times R_{0} \times R_{8}} \end{array}{ }_{\text {node: }} \end{aligned}$ |
| Maximum frequency V pps] |  |
| Acceleration rate g $\mathrm{pps} / \mathrm{sec}]$ | $\begin{aligned} & \text { St and al one } \quad g=\frac{f \times K \times R_{5}}{131,072} \quad \begin{array}{l} \text { Li near interpol ation } \\ \text { node: } \end{array} \quad g=\frac{f \times K \times R_{5} \times R_{1}}{131,072 \times R_{8}} \end{aligned}$ |
| Deceleration rate <br> g $\mathrm{pps} / \mathrm{sec}]$ |  |
| Acceleration/ deceleration time (linear) Tg $\mathrm{Kec}^{7}$ | (Accel er ation) $\quad T g=\frac{131,072 \times\left(R_{4}-R_{3}\right)}{f \times R_{5}} \quad$ (Decel eration) $T g=\frac{131,072 \times\left(R_{4}-R_{3}\right)}{f \times R_{6}}$ |
| Acceleration/ deceleration time (sine) Tg §ec] | $\begin{gathered} \text { (Accel er ation) } \\ \quad \mathrm{Tg}=\frac{131,072 \times\left(R_{4}-R_{3}-2 \times R_{7}+\pi \times R_{7}\right)}{\mathrm{f} \times \mathrm{R}_{5}} \quad \text { (Decel er at i on) } \\ \mathrm{Tg}=\frac{131,072 \times\left(R_{4}-R_{3}-2 \times R_{7}+\pi \times R_{7}\right)}{\mathrm{f} \times \mathrm{R}_{6}} \end{gathered}$ |
| Acceleration/ deceleration time (parabolic) Tg [sec] | (Accel er at i on) <br> ( Decel er at i on) $\operatorname{Tg}=\frac{131,072 \times\left(R_{4}-R_{3}+2 \times R_{7}\right)}{f \times R_{5}}$ $\operatorname{Tg}=\frac{131,072 \times\left(R_{4}-R_{3}+2 \times R_{7}\right)}{f \times R_{6}}$ |
| Deceleration start point (linear) <br> Dp [pulses] | For $r$ apezo( when R4 > R3) : Tri angul ar drive: $D p=\frac{\left(R_{4}-R_{3}\right)\left(R_{4}+R_{3}-1\right)}{R_{0} \times R_{6}}$ $\mathrm{Dp}=\frac{\mathrm{R}_{1} \times \mathrm{R}_{5}}{\mathrm{R}_{5}+\mathrm{R}_{6}}$ |
| Deceleration start point (sine) <br> Dp [pulses] |  |

Table 5-2: Parameter Calculation Formulae

| Deceleration start point <br> (parabolic) | For rapezo <br> (when $R 4>R 3):$ |
| :--- | :--- |
| Dp [pulses] |  |$\quad D p=\frac{\left(R_{4}-R_{3}+2 \times R_{7}-2\right)\left(R_{4}+R_{3}\right)}{R_{0} \times R_{6}} \quad$| Tri angul ar |
| :--- |
| dri ve: |$\quad D p=\frac{R_{1} \times R_{5}}{R_{5}+R_{6}}$|  |
| :--- |

$\pi=$ Ratio of the circumference of a circle to its diameter

## 6. Initial Setting Registers

The initial setting registers must be set after the power ON reset. After that, the setting can be changed while pulse output is stopping.

## 6-1 Functions of Initial Setting Registers

## 6-1-1 Pulse Output Initial Setting Register

Table 6-1: Pulse Output Initial Setting Register

| bit | Description |  |  |
| :---: | :--- | :--- | :---: |
|  | 0 |  |  |
|  |  |  |  |
| 0 | 0.5 pulse idling | 1.5 pulse idling |  |
| 1 | Undefined (0 should be set) | + direction is CCW pulse output |  |
| 2 | + direction is CW pulse output | PULSE/DIR gate system |  |
| 3 | CW/CCW 2-clock system |  |  |
| 4 | Undefined (0 should be set) |  |  |
| 5 | Undefined (0 should be set) | Undefined (0 should be set) <br> positioning has completed. |  |
| 6 | Operation completion flag is set to ON when the <br> pulse output has completed | Operation completion flag is set to ON when |  |

## Idling

The idling function allows delay acceleration or deceleration. When it is set to 0 , acceleration starts in 0.5 pulse after the startup and deceleration ends 0.5 pulse before the stopping of the pulse. When it is set to 1 , acceleration starts in 1.5 pulses after the startup and deceleration ends 1.5 pulses before the stopping of the pulse.

## $\overline{\text { POUT }}$ and $\overline{\text { PDIR outputs }}$

Table 6-2: Pulse Output Initial Setting and POUT/PDIR Outputs

| bit3 | bit2 | POUT |  | PDIR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | + | - | + | - |
| 0 | 0 |  | H | H |  |
| 0 | 1 | H |  |  | $\mathrm{H}$ |
| 1 | 0 |  |  | $\mathrm{H}$ | L |
| 1 | 1 |  |  | L | H |

Note: Inverts in the case of positive logic.

## Operation completion flag

The operation completion flag can be read in the operation status byte. When bit $7=0$, the operation completion flag becomes 1 immediately after the completion of the pulse output. When bit $7=1$, the flag becomes 1 when the INP input terminal becomes active after the completion of the pulse output.

## 6-1-2 Encoder Input/Output Initial Setting Register

Table 6-3: Encoder Input/Output Initial Setting Register

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
|  |  |  |
| 0 | $\overline{\mathrm{EA}}, \overline{\mathrm{EB}}$ input mode code 1 |  |
| 1 | $\overline{\mathrm{EA}}, \overline{\mathrm{EB}}$ input mode code 2 |  |
| 2 | Undefined (0 should be set) |  |
| 3 | Undefined (0 should be set) |  |
| 4 | Undefined (0 should be set) |  |
| 5 | Undefined (0 should be set) |  |
| 6 | Undefined (0 should be set) |  |
| 7 | Undefined (0 should be set) |  |

## Encoder input mode codes

Table 6-4: Encoder Input Mode Codes

| Code 2 | Code 1 | Description |
| :---: | :---: | :---: |
| 0 | 0 | 2 clocks, negative logic |
| 0 | 1 | 2-phase clock, x 4 multiplication |
| 1 | 0 | 2-phase clock, x 2 multiplication |
| 1 | 1 | 2-phase clock, x 1 multiplication |

## 6-1-3 Counter A/B Initial Setting Register

Table 6-5: Counter A/B Initial Setting Register

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
|  |  |  |
| 0 | Internal oscillation pulse count disable | Internal oscillation pulse count enable |
| 1 | Encoder count disable | Encoder count enable |
| 2 | Undefined (0 should be set) | Encoder input reverse count |
| 3 | Encoder input forward count | Count between 0 and $16,777,215$ |
| 4 | Undefined (0 should be set) | 32 -bit mode |
| 5 | Count between $-8,388,608$ and $8,388,607$ |  |
| 6 | 24 -bit mode |  |
| 7 | Undefined (0 should be set) |  |

## Multiplex input count

Counters A and B can simultaneously count internal oscillation pulses and encoder input. The counts can be enabled with bits 0 to 1 .
The forward count of the encoder input of bit 3 refers to counting upward when phase A precedes phase B and counting downward when phase B precedes phase A. The opposite results when the reverse count setting is made.

## 6-1-4 Input Initial Setting Register

Table 6-6: Input Initial Setting Register

| bit | Description |  |
| :---: | :---: | :---: |
|  | 0 | 1 |
| 0 | +SLD and -SLD are deceleration inputs | +SLD and -SLD are deceleration stop inputs |
| 1 | +SLD and -SLD are level operation inputs | +SLD and -SLD are edge operation inputs |
| 2 | $\overline{\text { ORG }}$ is a low-sensitivity input | ORG is a high-sensitivity input |
| 3 | $\overline{\text { MARK }}$ is a low-sensitivity input | $\overline{\text { MARK }}$ is a high-sensitivity input |
| 4 | $\overline{\text { CLRA }}$ is the level clear input | $\overline{\text { CLRA }}$ is the edge clear input |
| 5 | Undefined (permanently set to 0) |  |
| 6 | Undefined (permanently set to 0) |  |
| 7 | Undefined (permanently set to 0) |  |

When bit $0=0$ and + SLD or -SLD goes active, the drive decelerates to the speed set with register $\mathrm{R}_{3}$ (in the case that $R_{4}>R_{3}$ ) and the pulse continues to be output. When bit $0=1$ and $\overline{+S L D}$ or $\overline{-S L D}$ goes active, the drive decelerates to the speed set with register $\mathrm{R}_{3}$ and the pulse output is stopped.

## 6-1-5 Input Logic Initial Setting Registers I and II

Input logic initial setting register I performs read/write of data 1 shown in Table 2-1, while input logic initial setting register II performs read/write of data 2 in the same table.

Table 6-7: Input Logic Initial Setting Register I

| bit | Description |  |
| :---: | :---: | :---: |
|  | 0 | 1 |
| 0 | +EL is a negative logic input | $\overline{+E L}$ is a positive logic input |
| 1 | $\overline{-E L}$ is a negative logic input | $\overline{-E L}$ is a positive logic input |
| 2 | $\overline{\text { ALM }}$ is a negative logic input | $\overline{\mathrm{ALM}}$ is a positive logic input |
| 3 | Not used (permanently set to 0) |  |
| 4 | Not used (permanently set to 0) |  |
| 5 | Not used (permanently set to 0) |  |
| 6 | Not used (permanently set to 0) |  |
| 7 | Not used (permanently set to 0) |  |

Table 6-8: Input Logic Initial Setting Register II

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 | 1 |
| 0 | $\overline{\text { ORG }}$ is negative logic | $\overline{\text { ORG }}$ is positive logic |
| 1 | $\overline{\overline{E Z}}$ is negative logic | $\overline{\text { EZ }}$ is positive logic |
| 2 | $\overline{+ \text { SLD }}$ is a negative logic input | $\overline{+ \text { SLD }}$ is a positive logic input |
| 3 | $\overline{- \text { SLD }}$ is a negative logic input | $\overline{- \text { SLD }}$ is a positive logic input |
| 4 | $\overline{\text { INP }}$ is a negative logic input | $\overline{\overline{\text { INP }} \text { is a positive logic input }}$ |
| 5 | $\overline{\text { MARK }}$ is a negative logic input | $\overline{\text { MARK }}$ is a positive logic input |
| 6 | Not used (permanently set to 0$)$ |  |
| 7 | Not used (permanently set to 0$)$ |  |

## 6-1-6 Initial Setting Register (F) for Input Filter

The setting values of the input filter decides the sensitivity of +EL, -EL, ALM, +SLD and -SLD. The setting value range is from 1 to 256 . Set 0 for 256 .
Sensitivity is one cycle of $16 \times \mathrm{F} \times$ reference clock.

## 6-1-7 Initial Setting Register for Output

Table 6-9: Initial Setting Register for Output

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
| $\overline{\text { CLR }}$ is general-purpose output |  |  |
| 0 | $\overline{\text { CLR }}$ is 1-shot output | 1 |
| 1 | Undefined (permanently set to 0 ) |  |
| 2 | Undefined (permanently set to 0 ) |  |
| 3 | Undefined (permanently set to 0) |  |
| 4 | Undefined (permanently set to 0 ) |  |
| 5 | Undefined (permanently set to 0 ) |  |
| 6 | Undefined (permanently set to 0 ) |  |
| 7 | Undefined (permanently set to 0 ) |  |

## 6-1-8 Initial Setting Register for Output Logic

Table 6-10: Initial Setting Register for Output Logic

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 | 1 |
| 0 | $\overline{\text { POUT }}$ is a negative logic output | $\overline{\text { POUT }}$ is a positive logic output |
| 1 | $\overline{\text { PDIR }}$ is a negative logic output | $\overline{\mathrm{PDIR}}$ is a positive logic output |
| 2 | $\overline{\mathrm{CLR}}$ is a negative logic output | $\overline{\mathrm{CLR}}$ is a positive logic output |
| 3 | $\overline{\mathrm{INT}}$ is a negative logic output | $\overline{\mathrm{INT}}$ is a positive logic output |
| 4 | $\overline{\text { ERROR }}$ is a negative logic output | $\overline{\mathrm{ERROR}}$ is a positive logic output |
| 5 | $\overline{\text { MOVE } \text { is a negative logic output }}$ | $\overline{\text { MOVE }}$ is a positive logic output |
| 6 | Undefined (permanently set to 0$)$ |  |
| 7 | Undefined (permanently set to 0 ) |  |

There is no setting of ERROR and MOVE for bit 4 and 5 for X7083.

## 7. Control Mode Registers

## 7-1 Functions of Control Mode Registers

## 7-1-1 Operation Control Mode Setting Register

Table 7-1: Operation Control Mode Setting Register

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
|  | 1 |  |
| 0 | Sync start control is disabled | Sync start control is enabled |
| 1 | Deceleration start point control code 1 |  |
| 2 | Deceleration start point control code 2 |  |
| 3 | Interpolation control is disabled | Interpolation control is enabled |
| 4 | Linear acceleration/deceleration mode | S-shaped acceleration/deceleration mode |
| 5 | Parabolic | Sine |
| 6 | Not used (permanently set to 0 ) |  |
| 7 | Not used (permanently set to 0 ) |  |

## Sync start

When the sync start control is enabled, the pulse oscillation or timer count starts when sync start input terminal $\overline{\text { SYNC }}$ changes from High to Low after one of the drive commands 00 h to 19 h or a timer command 40 h or 41 h has been written.

## Deceleration start point control codes

The deceleration start point control has 4 modes as shown below. These modes are set with bits 1 and 2 .

| Code 2 | Code 1 | Description |
| :---: | :---: | :--- |
| 0 | 0 | Automatic calculation mode |
| 0 | 1 | Offset setting mode |
| 1 | 0 | Manual setting mode |
| 1 | 1 | No deceleration mode |

## Automatic calculation

This mode can be used when the acceleration rate and deceleration rate are identical. Counter D is cleared to 0 at the start of drive and counting is performed during drive. When the value of remaining pulse count management counter C becomes equal to or less than the value of counter D , the drive starts to decelerate. Counter D need not be preset before the startup.

## Offset setting

In this mode, counter D is not cleared to 0 at the start of drive and counting is performed during drive. When the value of remaining pulse count management counter $C$ becomes equal to, or less than, the value of counter $D$, the drive starts to decelerate. The offset value should be preset before starting the drive. The setting value is between $-8,388,608$ and $8,388,607$ and preset in counter $D$ in the form of 2 complement. The operations that occur are shown below.

## When a positive value is preset:



## When a negative value is preset:



## Manual setting

In this mode, deceleration start point management counter D does not perform counting but functions as register $\mathrm{R}_{2}$. It is not cleared to 0 at the start of drive. The drive starts to decelerate when the value of remaining pulse count management counter C becomes equal to, or less than, the preset value of register $\mathrm{R}_{2}$.

## No deceleration start point operation performed

The operation in this mode is as shown below.


## S-shaped acceleration/deceleration

In the S-shaped acceleration/deceleration mode that is set with bit $4=1$, two kinds of acceleration/deceleration shapes can be used. Namely, the parabolic curve can be used when bit $5=0$ and the sine functional curve can be used when bit $5=1$.

## 7-1-2 Counter A and B Control Register

Table 7-2: Counter A and B Control Register

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 | 1 |
| 0 | Automatic clear does not occur after error <br> stop | Automatic clear occurs after error stop |
| 1 | Automatic clear does not occur after <br> normal stop | Automatic clear occurs after normal stop |
| 2 | Undefined (permanently set to 0) |  |
| 3 | Undefined (permanently set to 0) |  |
| 4 | Undefined (permanently set to 0) |  |
| 5 | Undefined (permanently set to 0 ) |  |
| 6 | Undefined (permanently set to 0) |  |
| 7 | Undefined (permanently set to 0) |  |

## 7-1-3 CLR Output Control Mode Register

Table 7-3: $\overline{\mathrm{CLR}}$ Output Control Mode Register

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
| 1 |  |  |
| 0 | CLR is not output automatically after <br> error stop | CLR is output automatically after error <br> stop |
| 1 | CLR is not output automatically after <br> normal stop | CLR is output automatically after normal <br> stop |
| 2 | Undefined (permanently set to 0) |  |
| 3 | Undefined (permanently set to 0) |  |
| 4 | Undefined (permanently set to 0) |  |
| 5 | Undefined (permanently set to 0) |  |
| 6 | Undefined (permanently set to 0) |  |
| 7 | Undefined (permanently set to 0) |  |

## 7-1-4 Comparator Control Mode Register

Table 7-4: Comparator Control Mode Register

| bit | Description |  |
| :---: | :---: | :---: |
|  | 0 | 1 |
| 0 | P input select code 1 |  |
| 1 | P input select code 2 |  |
| 2 | Undefined (0 should be set) |  |
| 3 | Q input select code 1 |  |
| 4 | Q input select code 2 |  |
| 5 | Undefined (0 should be set) |  |
| 6 | Absolute value comparison | 2 complement comparison |
| 7 | Comparator output is $\mathrm{P}=\mathrm{Q}$ | Comparator output is $\mathrm{P}>\mathrm{Q}$ |

There is no setting of comparator output on bit7 for X7083.

## Input select code (common to Pand Q)

| Code 2 | Code 1 | Description |
| :---: | :---: | :--- |
| 0 | 0 | Counter A |
| 0 | 1 | Counter B |
| 1 | 0 | Counter C |
| 1 | 1 | Comparator register |

## 8. Interrupt Function

The LSI has an interrupt function based on the pulse output, counter and sensor factors. It is also possible to mask the interrupt due to each factor.

## 8-1 Interrupt Mask Registers

## 8-1-1 Pulse Oscillation Interrupt Mask Register

Table 8-1: Pulse Oscillation Interrupt Mask Register

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
|  | 1 |  |
| 0 | Normal pulse output completion interrupt <br> disabled | Normal pulse output completion interrupt <br> enabled |
| 1 | Error stop interrupt disabled | Error stop interrupt enabled |
| 2 | Deceleration start point interrupt disabled | Deceleration start point interrupt enabled |
| 3 | ISO-speed interrupt disabled | ISO-speed interrupt enabled |
| 4 | Not used (permanently set to 0) |  |
| 5 | Maximum acceleration rate interrupt <br> disabled | Maximum acceleration rate interrupt <br> enabled |
| 6 | Not used (permanently set to 0) |  |
| 7 | Not used (permanently set to 0) |  |

## 8-1-2 Counter Interrupt Mask Register

Table 8-2: Counter Interrupt Mask Register

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
|  | 1 |  |
| 0 | Counter A carry interrupt disabled | Counter A carry interrupt enabled |
| 1 | Counter A borrow interrupt disabled | Counter A borrow interrupt enabled |
| 2 | Counter B carry interrupt disabled | Counter B carry interrupt enabled |
| 3 | Counter B borrow interrupt disabled | Counter B borrow interrupt enabled |
| 4 | Undefined (permanently set to 0 ) |  |
| 5 | Counter C borrow interrupt disabled | Counter C borrow interrupt enabled |
| 6 | Undefined (permanently set to 0 ) |  |
| 7 | Undefined (permanently set to 0 ) |  |

## 8-1-3 Sensor Interrupt Mask Register

Table 8-3: Sensor Interrupt Mask Register

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
| $\overline{\text { ORG }}$ interrupt disabled | 1 |  |
| 0 | $\overline{\text { ORG }}$ interrupt enabled |  |
| 1 | $\overline{\mathrm{EZ}}$ interrupt disabled | $\overline{\text { EZ }}$ interrupt enabled |
| 2 | $\overline{\mathrm{IN0}}$ interrupt disabled | $\overline{\text { IN0 }}$ interrupt enabled |
| 3 | $\overline{\text { MARK }}$ interrupt disabled | $\overline{\text { MARK interrupt enabled }}$ |
| 4 | Undefined (permanently set to 0) |  |
| 5 | Undefined (permanently set to 0) |  |
| 6 | Undefined (permanently set to 0$)$ |  |
| 7 | Undefined (permanently set to 0) |  |

## 8-1-4 Comparator Interrupt Mask Register

Table 8-4: Comparator Interrupt Mask Register

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
| 1 |  |  |
| 0 | $\mathrm{P}=\mathrm{Q}$ interrupt disabled | $\mathrm{P}=\mathrm{Q}$ interrupt enabled |
| 1 | $\mathrm{P}>\mathrm{Q}$ interrupt disabled | $\mathrm{P}>\mathrm{Q}$ interrupt enabled |
| 2 | Undefined (permanently set to 0 ) |  |
| 3 | Undefined (permanently set to 0 ) |  |
| 4 | Undefined (permanently set to 0 ) |  |
| 5 | Undefined (permanently set to 0 ) |  |
| 6 | Undefined (permanently set to 0 ) |  |
| 7 | Undefined (permanently set to 0 ) |  |

## 8-2 Interrupt Flag Registers

## 8-2-1 Pulse Oscillation Interrupt Flag Register

Table 8-5: Pulse Oscillation Interrupt Flag Register

| bit | Description |  |  |  |
| :---: | :--- | :--- | :---: | :---: |
|  | 0 |  |  |  |
|  |  |  |  |  |
| 0 | Pulse output completion interrupt flag is OFF | Pulse output completion interrupt flag is ON |  |  |
| 1 | Error stop interrupt flag is OFF | Error stop interrupt flag is ON |  |  |
| 2 | Deceleration start point interrupt flag is OFF | Deceleration start point interrupt flag is ON |  |  |
| 3 | ISO-speed interrupt flag is OFF | ISO-speed interrupt flag is ON |  |  |
| 4 | Undefined (permanently set to 0) | Maximum acceleration rate interrupt flag is <br> ON |  |  |
| 5 | Maximum acceleration rate interrupt flag is <br> OFF |  |  |  |
| 6 | Not used (permanently set to 0 ) |  |  |  |
| 7 | Not used (permanently set to 0 ) |  |  |  |

## 8-2-2 Counter Interrupt Flag Register

Table 8-6: Counter Interrupt Flag Register

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
|  |  |  |
| 0 | Counter A carry interrupt flag is OFF | Counter A carry interrupt flag is ON |
| 1 | Counter A borrow interrupt flag is OFF | Counter A borrow interrupt flag is ON |
| 2 | Counter B carry interrupt flag is OFF | Counter B carry interrupt flag is ON |
| 3 | Counter B borrow interrupt flag is OFF | Counter B borrow interrupt flag is ON |
| 4 | Undefined (permanently set to 0) | Counter C borrow interrupt flag is ON |
| 5 | Counter C borrow interrupt flag is OFF |  |
| 6 | Undefined (permanently set to 0) |  |
| 7 | Undefined (permanently set to 0 ) |  |

## 8-2-3 Sensor Interrupt Flag Register

Table 8-7: Sensor Interrupt Flag Register

| bit | Description |  |
| :---: | :---: | :---: |
|  | 0 | 1 |
| 0 | ORG interrupt flag is OFF | ORG interrupt flag is ON |
| 1 | EZ interrupt flag is OFF | EZ interrupt flag is ON |
| 2 | IN0 interrupt flag is OFF | IN0 interrupt flag is ON |
| 3 | MARK interrupt flag is OFF | MARK interrupt flag is ON |
| 4 | Undefined (permanently set to 0) |  |
| 5 | Undefined (permanently set to 0) |  |
| 6 | Undefined (permanently set to 0) |  |
| 7 | Undefined (permanently set to 0) |  |

## 8-2-4 Comparator Interrupt Flag Register

Table 8-8: Comparator Interrupt Flag Register

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |

## 9. Status Registers

Status registers consist of a main status - i.e. operation status and interrupt status that can be read in Table 2-1
Address Allocation Table— and an auxiliary status that sets the register selector and then reads using read data 1 to 3 .

## 9-1 Main Status

## 9-1-1 Operation Status

The operation status register shows the most comprehensive status of the LSI. The status contents include the pulse output condition, the pulse output end condition, and whether interrupt is used or not.

Table 9-1: Operation Status

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
| Stopping | Operating |  |
| 0 | Not accelerating | Accelerating |
| 1 | Not decelerating | Decelerating |
| 2 | Undefined (permanently set to 0) |  |
| 3 | Error flag is OFF | Irror flag is ON |
| 4 | Stop flag is OFF | Stop flag is ON |
| 5 | Interrupt flag is ON |  |
| 6 | $\overline{\text { Interrupt flag is OFF }}$ | $\overline{\text { CLR }}$ is ON |
| 7 | $\overline{\text { CLR }}$ is OFF |  |

## 9-1-2 Interrupt Status

The interrupt status register allows you to identify the group to which the current interrupt belongs. Detailed interrupt factors can be identified by reading the interrupt flag register.

Table 9-2: Interrupt Status

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 | 1 |
| 0 | Pulse oscillation interrupt flag is OFF | Pulse oscillation interrupt flag is ON |
| 1 | Counter interrupt flag is OFF | Counter interrupt flag is ON |
| 2 | Sensor interrupt flag is OFF | Sensor interrupt flag is ON |
| 3 | Comparator interrupt flag is OFF | Comparator interrupt flag is ON |
| 4 | Not used (permanently set to 0) |  |
| 5 | Not used (permanently set to 0) |  |
| 6 | Not used (permanently set to 0) |  |
| 7 | Not used (permanently set to 0) |  |

## 9-1-3 Interrupt Axis Status

The interrupt axis status allows you to identify which axis is generating an interrupt.
Table 9-3: Interrupt Axis Status

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 | 1 |
| 0 | Axis \#1interrupt flag is OFF | Axis \#linterrupt flag is ON |
| 1 | Axis \#2 interrupt flag is OFF | Axis \#2 interrupt flag is ON |
| 2 | Axis \#3 interrupt flag is OFF | Axis \#3 interrupt flag is ON |
| 3 | Axis \#4 interrupt flag is OFF | Axis \#4 interrupt flag is ON |
| 4 | Axis \#5 interrupt flag is OFF | Axis \#5 interrupt flag is ON |
| 5 | Axis \#6 interrupt flag is OFF | Axis \#6 interrupt flag is ON |
| 6 | Axis \#7 interrupt flag is OFF | Axis \#7 interrupt flag is ON |
| 7 | Axis \#8 interrupt flag is OFF | Axis \#8 interrupt flag is ON |

.Axes \#1 to \#4 for X7043; axes \#1 to \#2 are for X7023.

## 9-2 Auxiliary Status

## 9-2-1 Sensor Status

The sensor status registers allow you to read the conditions of the sensor input in real time. It is a 2-byte, individually read register. When the register selector shown in Table 2-1 Address Allocation Table is written, read data 1 allows the reading of the status of $\overline{+E L},-\overline{E L}$ and $\overline{\text { ALM, }}$, and read data 2 allows the reading of the status of $\overline{\text { ORG }}, \overline{\mathrm{EZ}},+\overline{+S L D},-\overline{S L D}, \overline{\text { INP }}$ and $\overline{\text { MARK. }}$

Table 9-4: Sensor Status 1

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
| $\overline{\text { +EL }}$ is OFF | $\overline{\text { +EL }}$ is ON |  |
| 0 | $\overline{-\mathrm{EL}}$ is OFF | $\overline{-\mathrm{EL}}$ is ON |
| 1 | $\overline{\text { ALM }}$ is OFF | $\overline{\mathrm{ALM}}$ is ON |
| 2 | Not used (permanently set to 0) |  |
| 3 | Not used (permanently set to 0) |  |
| 5 | Not used (permanently set to 0) |  |
| 6 | Not used (permanently set to 0) |  |
| 7 | Not used (permanently set to 0) |  |

Table 9-5: Sensor Status 2

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
| $\overline{\text { ORG }}$ is OFF | $\overline{\text { ORG }}$ is ON |  |
| 0 | $\overline{\text { EZ }}$ is OFF | $\overline{\text { EZ }}$ is ON |
| 1 | $\overline{+S L D}$ is ON |  |
| 2 | $\overline{+S L D}$ is OFF | $\overline{-S L D}$ is ON |
| 3 | $\overline{-S L D}$ is OFF | $\overline{\text { INP }}$ is ON |
| 4 | $\overline{\mathrm{INP}}$ is OFF | $\overline{\text { MARK }}$ is ON |
| 5 | $\overline{\text { MARK }}$ is OFF |  |
| 6 | Not used (permanently set to 0$)$ |  |
| 7 | Not used (permanently set to 0$)$ |  |

## 9-2-2 Normal Stop Factor Status

The normal stop factor status register allows you to identify the stop factor when the stop flag of the operation status is ON and the error flag of the operation status is OFF. The stop is due to the completion of the return-toorigin operation if $\overline{\mathrm{ORG}}$ and $\overline{\mathrm{EZ}}$ are ON, and due to the deceleration stop by the sensor if $\overline{+\mathrm{SLD}}$ or $\overline{-\mathrm{SLD}}$ is ON.

Table 9-6: Normal Stop Factor Status

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
| $\overline{\text { ORG }}$ is OFF | $\overline{\text { ORG }}$ is ON |  |
| 0 | $\overline{\text { EZ }}$ is OFF | $\overline{\text { EZ }}$ is ON |
| 1 | $\overline{+S L D}$ is OFF | $\overline{+ \text { SLD }}$ is ON |
| 2 | $\overline{\text { SLD }}$ is OFF | $\overline{\text { SLD }}$ is ON |
| 3 | Not used (permanently set to 0 ) |  |
| 5 | Not used (permanently set to 0$)$ |  |
| 6 | Not used (permanently set to 0 ) |  |
| 7 | Not used (permanently set to 0 ) |  |

## 9-2-3 Error Stop Factor Status

The error stop factor status register allows you to identify the stop factor when both the stop and error flags of the operation status are ON.

Table 9-7: Error Stop Factor Status

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
| $\overline{+ \text { EL }}$ is OFF | $\overline{+ \text { EL }}$ is ON |  |
| 0 | $\overline{-\mathrm{EL}}$ is ON |  |
| 1 | $\overline{\mathrm{EL}}$ is OFF | $\overline{\mathrm{ALM}}$ is ON |
| 2 | $\overline{\mathrm{ALM}}$ is OFF |  |
| 3 | Not used (permanently set to 0 ) |  |
| 4 | Not used (permanently set to 0 ) |  |
| 5 | Not used (permanently set to 0 ) |  |
| 6 | Not used (permanently set to 0 ) |  |
| 7 | Not used (permanently set to 0 ) |  |

## 9-2-4 General-Purpose Input Status

The general-purpose input status register allows you to identify the conditions of the $\overline{\mathrm{IN} 0 \text { to } 7}$ inputs in real time.
Table 9-8: General-Purpose Input Status

| bit | Description |  |
| :---: | :--- | :--- |
|  | 0 |  |
|  |  |  |
| 0 | $\overline{\mathrm{IN} 0}$ is OFF | $\overline{\mathrm{IN} 0}$ is ON |
| 1 | $\overline{\mathrm{IN} 1}$ is OFF | $\overline{\mathrm{IN} 1}$ is ON |
| 2 | $\overline{\mathrm{IN} 2}$ is OFF | $\overline{\mathrm{IN} 2}$ is ON |
| 3 | $\overline{\mathrm{IN} 3}$ is OFF | $\overline{\mathrm{IN} 3}$ isON |
| 4 | $\overline{\mathrm{IN} 4}$ is OFF | $\overline{\mathrm{IN} 4}$ is ON |
| 5 | $\overline{\mathrm{IN} 5}$ is OFF | $\overline{\mathrm{IN} 5}$ is ON |
| 6 | $\overline{\mathrm{IN} 6}$ is OFF | $\overline{\mathrm{IN} 6}$ is ON |
| 7 | $\overline{\mathrm{IN} 7}$ is OFF | $\overline{\mathrm{IN} 7}$ is ON |

## 9-2-5 Comparator Status

The comparator status shows the result of comparison between the P and Q inputs set with the comparator control mode setting register.

Table 9-9: Comparator Status

| bit | Description |  |
| :---: | :---: | :---: |
|  | 0 | 1 |
| 0 | P is not equal to Q | $\mathrm{P}=\mathrm{Q}$ |
| 1 | P is not larger than Q | $\mathrm{P}>\mathrm{Q}$ |
| 2 | Not used (permanently set to 0) |  |
| 3 | Not used (permanently set to 0) |  |
| 4 | Not used (permanently set to 0) |  |
| 5 | Not used (permanently set to 0) |  |
| 6 | Not used (permanently set to 0) |  |
| 7 | Not used (permanently set to 0 ) |  |

## 10. Application Example

## 10-1 Initial Setting

After power ON resetting, the eight initial setting registers must be set once. They do not need to be set in any particular order.

Figure 10-1: Initial Setting Flow Chart (for Axis \#1)


Counter A initial setting


Counter A is set to a current position counter using the $\overline{E A}$ and $\overline{\mathrm{EB}}$ i nputs.
Absol ute val ue counting is set.
32-bit mode is set.

Counter B initial setting

| D7 | D6 | D6 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |



Counter Bis set to a deviation counter usi ng the $\overline{E A}$ and $\overline{E B}$ inputs and internally oscillated pulse.
2 compl enent counting is set.
24 bit node is set.



## 10-2 Control Mode Setting

After the power ON resetting, the control mode must be set at least once before starting the drive. There is no particular setting order, but you should change the operation mode setting register before setting the $\mathrm{R}_{1}$ register and the $\mathrm{R}_{8}$ register. Resetting is not required unless the control mode is to be changed.

Figure 10-2: Control Mode Setting Flow Chart (for Axis \#1)


Counter A control mode setting

| $D 7$ | D6 | D6 | D4 | D3 | D2 | D1 | DO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


$\quad$| Aut onat ic clear after er ror stop is |
| :---: |
| di sabl ed. |

Aut onat ic cl ear after normal stop is



Aut omatic clear after error stop is di sabl ed.
Aut onat ic clear after normal stop is di sabl ed.
$\overline{\text { CLR }}$ out put control mode setting


Aut omatic clear after error stop is di sabl ed.
Aut omatic clear after normal stop is di sabl ed.

Compar at or control mode setting

| D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |



P input is set to a comparator regi stor.
Q input is set to counter C.
Absol ute val ue compari son is set.
$\overline{\mathrm{CMP}}$ out put is set to $\mathrm{P}>\mathrm{Q}$.

## 10-3 Parameter Setting

Among the parameter setting registers, the output pulse count setting register $\left(R_{1}\right)$, the deceleration start point setting register $\left(R_{2}\right)$, and the linear interpolation base setting register $\left(R_{8}\right)$ should be set immediately before writing the drive command. This section describes the frequency multiplication ratio setting register $\left(\mathrm{R}_{0}\right)$, the startup frequency setting register $\left(\mathrm{R}_{3}\right)$, the maximum frequency setting register $\left(\mathrm{R}_{4}\right)$, the acceleration rate setting register $\left(\mathrm{R}_{5}\right)$, the deceleration rate setting register $\left(\mathrm{R}_{6}\right)$, and the S -shaped acceleration/deceleration section setting register $\left(\mathrm{R}_{7}\right)$. These registers must be set at least once after the power ON resetting, but the parameters that have not changed since then need not be set again. Also, the S-shaped acceleration/deceleration section setting register $\left(\mathrm{R}_{7}\right)$ need not be set when the S -shaped acceleration/deceleration are not used.

Figure 10-3: Parameter Setting Flow Chart (for Axis \#1)



Naxi mumfrequency setting
Set value $2134 \mathrm{~h}=8,500$
Naxi mum fr equency $\quad V=\frac{16,384,000 \times 8,500}{65,536 \times 250}=8,500 \mathrm{pps}$
$S$ shaped accel er at ion/decel er ation section setting
Set val ue 0 BB8h $=3,000$
The speed varies as shown in the following di agram


Accel er ation rate setting
Set val ue 00AOh $=160$
Accel er at i on r ate $\mathrm{g}=\frac{16,384,000 \times 1 \times 160}{131,072}=20,000 \mathrm{pps} / \mathrm{s}$

Accel er ation time $\operatorname{Tg}=\frac{131,072 \times(8,500-500)}{16384000 \times 160}=0.4 \mathrm{~s}$
(linear)
$16,384,000 \times 160$

Accel er at i on time $\operatorname{Tg}=\frac{131,072 \times(8,500-500+2 \times 3,000)}{(s \text { shaped par abol ic) }}=0.7 \mathrm{~s}$
$(16,384,000 \times 160$

Accel er ation time
( S - shaped si ne)

$$
\operatorname{Tg}=\frac{131,072 \times(8,500-500-2 \times 3,000+\pi \times 3,000)}{16,384,000 \times 160}=0.57 \mathrm{~s}
$$



## 10-4 Index Drive

This section takes the index drive of an independent axis as an example. As the drive is performed in the S-shaped acceleration/deceleration and deceleration start point automatic calculation modes, the acceleration rate $\left(\mathrm{R}_{5}\right)$ and deceleration rate $\left(R_{6}\right)$ should be set to identical values. The end of operation is confirmed by polling the status.

Figure 10-4: Index Drive Flow Chart (for Axis \#1)


See Figure 10-1 Initial Setting Fl ow Chart

See Figure 10-2 Control Mde Setting Fl ow Chart

See Figure 10-3 Par ameter Setting FI ow Chart

Out put pul se count ( $R_{1}$ ) setting

$$
\text { Set val ue } 0186 \mathrm{AOh}=100,000 \text { pul se }
$$

Oper at i on st at us

| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $?$ |  |  |  |  |  |

0: Oper ation compl eting flag OFF.
1: Oper ation compl eting flag ON.
Drive will not start while the operation complete flag is ON.


## 10-5 Return-to-Origin Operation

While there are a large number of patterns for the return-to-origin sequence, the description in this section will take the following sequence and condition as an example. Figure 10-6 Index Drive Flow Chart (for Axis \#1) shows the flow after the initial setting and parameter setting have completed.

Figure 10-5: Index Drive Flow Chart

Primary oper ation (bet ween $\overline{+E L}$ and $\overline{\mathrm{ORG}}$ )
High-speed movenent in the - di rection.
Decel eration and st op occur when $\overline{\text { ORG }}$ goes ON.


St ops for 3 seconds and then proceeds to the secondary oper ation.

Secondary oper ation
Const ant-speed novement in the +di rection.
St op occurs when ORG changes from ON to OFF.


Tertiary operation
Const ant-speed novenent in the - di rection.


Figure 10-6: Index Drive Flow Chart (for Axis \#1)


Oper ation control mode setting

| D7 | D6 | D6 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |



Sync start control is di sabl ed. Decel er ation start point aut omatic cal cul ation mode is set.
Interpol ation control is di sabled. S- shaped accel er at i on/decel er at i on mode is set.

I nt er pol ation control cannot be used in the ret urn-to- origin oper ation.


Aut omatic clear after error st op i s di sabl ed.
Aut onatic clear after normal st op is enabl ed.
The current position counter should be reset aut onatically to 0 at the moment the return-to- origin oper at ion completes.


Set so that the devi ation counter is 0 at the moment of stop.


A 1- shot out put occures out put at the moment of stop in order to eliminate pul ses in the servo driver.




## 10-6 Linear Interpolation Drive

This LSI is capable of multi-axial linear interpolation between axes \#1 to \#4, but also between multiple chips. Make the connections shown in the following figure to perform linear interpolation between multiple chips. However, X7083 cannot perform linear interpolation between multiple chips.

## 10-6-1 Hardware Note

To perform linear interpolation using multiple numbers of this LSI, interconnect the $\overline{\text { SYNC }}$ and $\overline{\mathrm{CP} 0}$ to 3 terminals as shown in Figure 10-7.

Figure 10-7: Linear Interpolation Connection Scheme


## 10-6-2 Flow of Linear Interpolation Drive

To drive multiple axes with linear interpolation, the frequency multiplication ratio $\left(\mathrm{R}_{0}\right)$, startup frequency $\left(\mathrm{R}_{3}\right)$, maximum frequency $\left(\mathrm{R}_{4}\right)$, acceleration rate $\left(\mathrm{R}_{5}\right)$, deceleration rate $\left(\mathrm{R}_{6}\right)$, and $S$-shaped acceleration/deceleration section (R7) parameter registers of all axes should be set to identical settings. The output pulse count registers $\left(\mathrm{R}_{1}\right)$ should be set to the respective movement amounts (pulse counts) of the axes, and the linear interpolation base setting register $\left(\mathrm{R}_{8}\right)$ should be set to the output pulse count of each axis at the maximum movement amount (pulse count) for all axes. In the deceleration start point manual setting mode, the deceleration start point registers $\left(\mathrm{R}_{2}\right)$ should be set for all axes at the value calculated based on the axis with the largest movement amount. The following figure shows the flow chart after the initial setting and parameter settings.

Figure 10-8: Linear Interpolation Drive Flow Chart (for X and Y Axes)


[^0]


Setting for linear inter pol ation base ( $\mathrm{R}_{8}$ ) for X axis
Nunber of $X$-axi s out put pul ses > nunber of $Y$ - axis output pul ses Set val ue 0186AOh $=100,000$

Setting for linear interpol ation base $\left(R_{8}\right)$ for $Y$ axis
Number of X -axis output pul ses > number of Y - axis out put pul ses Set val ue 0186AOh $=100,000$

[^1]

## 11. Electrical Characteristics

## 11-1 Absolute Maximum Rating (Vss = OV)

| Item | Symbol | Rating | Unit |
| :---: | :---: | :--- | :---: |
| Supply voltage | $\mathrm{V}_{\mathrm{dd}} \mathrm{INT}$ | -0.3 to +4.6 | V |
|  | $\mathrm{~V}_{\mathrm{dd}} \mathrm{IO}$ | -0.5 to +6.5 |  |
| Input voltage | $\mathrm{V}_{\mathrm{IN}}$ | $\mathrm{V}_{\mathrm{dd}} \mathrm{IO}=3.3 \mathrm{~V} \quad-0.3$ to $\mathrm{V}_{\mathrm{dd}} \mathrm{IO}+0.3$ |  |
|  |  | $\mathrm{~V}_{\mathrm{dd}} \mathrm{IO}=5 \mathrm{~V}$ | -0.5 to $\mathrm{V}_{\mathrm{dd}} \mathrm{IO}+0.5$ |
| Input current | $\mathrm{I}_{\mathrm{IN}}$ | $\pm 10$ | mA |
| Output current | $\mathrm{I}_{\mathrm{O}}$ | $\pm 25$ | mA |
| Storage temperature | $\mathrm{T}_{\text {stg }}$ | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

## 11-2 Recommended Operating Condition (Vss = OV)

| Item | Symbol | Rating | Unit |
| :---: | :--- | :--- | :---: |
| Supply voltage | $\mathrm{V}_{\mathrm{dd}} \mathrm{INT}$ | 3.0 to 3.6 | V |
|  | $\mathrm{~V}_{\mathrm{dd}} \mathrm{IO}$ | 4.5 to 5.5 or 3.15 to 3.45 |  |
| Ambient temperature | $\mathrm{T}_{\mathrm{a}}$ | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |

## 11-3 DC Characteristics

11-3-1 DC Characteristics (VddIO $=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}$ )

| Item | Symbol | Condition | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High-level input voltage | $\mathrm{V}_{\mathrm{IH}}$ |  | 4.0 |  |  | V |
| Low-level input voltage | $\mathrm{V}_{\text {IL }}$ |  |  |  | 0.8 | V |
| High-level input current | $\mathrm{I}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IH}}=\mathrm{Vdd}$ |  |  | 10 | $\mu \mathrm{A}$ |
| Low-level input current | $\mathrm{I}_{\text {IL }}$ |  | -10 |  | 10 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\mathrm{IL}}=\mathrm{Vss}$ | -200 |  | -10 |  |
| High-level output voltage | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ | 3.7 |  |  | V |
|  |  | $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ | Vdd-0.2 |  |  |  |
| Low-level output voltage | $\mathrm{V}_{\text {OL }}$ | $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  | $\mathrm{I}_{\text {OL }}=100 \mu \mathrm{~A}$ |  |  | 0.2 |  |
| Output leak current | $\mathrm{I}_{\mathrm{OZ}}$ | $\mathrm{V}_{\text {OUT }}=$ Vdd or Vss | -10 |  | 10 | $\mu \mathrm{A}$ |
| Hysteresis voltage *1 | $\mathrm{V}_{\mathrm{H}}$ |  | 0.2 | 0.3 |  | V |

*1 $\overline{\text { INP }}, \overline{\text { ALM }}, \overline{+E L}, \overline{-E L}, \overline{+S L D}, \overline{-S L D}, \overline{\text { ORG }}, \overline{\text { EZ }}, \overline{\text { IN0 to } 7}, \overline{\text { CLRA }}, \overline{\text { EA }}, \overline{\text { EB }}, \overline{\text { SYNC }}, \overline{\text { MARK }}, \overline{\text { CLK }}, \overline{\text { RST, A0 to 4, }} \overline{\text { CS }}, \overline{\text { RD }}$, and $\overline{\mathbf{W R}}$

## 11-3-2 DC Characteristics (VddIO = $3.3 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}$ )

| Item | Symbol | Condition | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High-level input voltage | $\mathrm{V}_{\mathrm{IH}}$ |  | 2.0 |  |  | V |
| High-level input voltage*1 |  |  | 0.7 VddIO |  |  |  |
| Low-level input voltage | $\mathrm{V}_{\text {IL }}$ |  |  |  | 0.8 | V |
| Low-level input voltage*1 |  |  |  |  | 0.3 VddIO |  |
| High-level input current | $\mathrm{I}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IH}}=\mathrm{Vdd}$ |  |  | 1 | $\mu \mathrm{A}$ |
| Low-level input current | $\mathrm{I}_{\text {IL }}$ |  | -1 |  |  | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\mathrm{IL}}=\mathrm{Vss}$ | -200 |  | -10 |  |
| High-level output voltage | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ | 2.4 |  |  | V |
| High-level output voltage*1 |  | $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$ |  |  |  |  |
| Low-level output voltage | $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ |  |  | 0.4 | V |
| Low-level output voltage*1 |  | $\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$ |  |  |  |  |
| Output leak current | $\mathrm{I}_{\mathrm{OZ}}$ | $\mathrm{V}_{\text {Out }}=\mathrm{Vdd}$ or Vss | -1 |  | 1 | $\mu \mathrm{A}$ |
| Hysteresis voltage *2 | $\mathrm{V}_{\mathrm{H}}$ |  | 0.1 | 0.4 |  | V |
| Static current consumption | $\mathrm{I}_{\text {DDS }}$ | $\mathrm{V}_{\text {IN }}=\mathrm{Vdd}$ or Vss |  |  | 60 | $\mu \mathrm{A}$ |

${ }^{*} \overline{\text { CP0 to } 3}$
*2 $\overline{\mathrm{INP}}, \overline{\mathrm{ALM}}, \overline{+ \text { EL }}, \overline{-E L}, \overline{+S L D}, \overline{-S L D}, \overline{\text { ORG }}, \overline{\text { EZ }}, \overline{\text { IN0 to } 7}, \overline{\text { CLRA }}, \overline{\mathrm{EA}}, \overline{\text { EB }}, \overline{\text { SYNC }}, \overline{\text { MARK }}, \overline{\text { CLK }}$, $\overline{\text { RST, }} \mathbf{A 0}$ to $4, \overline{\mathbf{C S}}, \overline{\mathbf{R D}}$, and $\overline{\mathbf{W R}}$

## 11-4 Switching Characteristics

11-4-1 CPU Interface (VddIO $=5 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VddINT}=3.3 \mathrm{~V}, \mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}$ )

| Item | Symbol | Condition | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clock frequency | $\mathrm{f}_{\mathrm{CLK}}$ |  |  |  | 20 | MHz |
| Clock period | $\mathrm{t}_{\mathrm{CLK}}$ |  | 50 |  |  | ns |
| Clock Low duration | $\mathrm{t}_{\mathrm{PWL}}$ |  | 8 |  |  | ns |
| Clock High duration | $\mathrm{t}_{\mathrm{PWH}}$ |  | 25 |  |  | ns |
| Read address stable time | $\mathrm{t}_{\mathrm{AR}}$ |  | 10 |  |  | ns |
| Read address retention time | $\mathrm{t}_{\mathrm{RA}}$ |  | 2 |  |  | ns |
| Read pulse width | $\mathrm{t}_{\mathrm{RR}}$ |  | 13 |  |  | ns |
| Data delay time | $\mathrm{t}_{\mathrm{RD}}$ | $\mathrm{CL}=100 \mathrm{pF}$ |  |  | 15 | ns |
| Data float delay time | $\mathrm{t}_{\mathrm{DF}}$ | $\mathrm{CL}=100 \mathrm{pF}$ |  |  | 15 | ns |
| Write address stable time | $\mathrm{t}_{\mathrm{AW}}$ |  | 0 |  |  | ns |
| Write address retention time | $\mathrm{t}_{\mathrm{WA}}$ |  | 0 |  |  | ns |
| Write pulse width | $\mathrm{t}_{\mathrm{WW}}$ |  | 13 |  |  | ns |
| Data setting time | $\mathrm{t}_{\mathrm{DW}}$ |  | 7 |  |  | ns |
| Data retention time | $\mathrm{t}_{\mathrm{WD}}$ |  | 0 |  |  | ns |
| Reset pulse width | $\mathrm{t}_{\mathrm{RST}}$ |  | $3 \mathrm{t}_{\mathrm{CLK}}$ |  |  | ns |
| Reset operation time | $\mathrm{t}_{\mathrm{RSTM}}$ |  |  |  | $3_{\mathrm{tCLK}}$ | ns |

[^2]
## 11-4-2 CPU Interface $\left(\mathrm{VddIO}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{VddINT}=3.3 \mathrm{~V}, \mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Item | Symbol | Condition | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clock frequency | $\mathrm{f}_{\mathrm{CLK}}$ |  |  |  | 20 | MHz |
| Clock period | $\mathrm{t}_{\mathrm{CLK}}$ |  | 50 |  |  | ns |
| Clock Low duration | $\mathrm{t}_{\mathrm{PWL}}$ |  | 12 |  |  | ns |
| Clock High duration | $\mathrm{t}_{\mathrm{PWH}}$ |  | 21 |  |  | ns |
| Read address stable time | $\mathrm{t}_{\mathrm{AR}}$ |  | 10 |  |  | ns |
| Read address retention time | $\mathrm{t}_{\mathrm{RA}}$ |  | 0 |  |  | ns |
| Read pulse width | $\mathrm{t}_{\mathrm{RR}}$ |  | 16 |  |  | ns |
| Data delay time | $\mathrm{t}_{\mathrm{RD}}$ | $\mathrm{CL}=100 \mathrm{pF}$ |  |  | 20 | ns |
| Data float delay time | $\mathrm{t}_{\mathrm{DF}}$ | $\mathrm{CL}=100 \mathrm{pF}$ |  |  | 19 | ns |
| Write address stable time | $\mathrm{t}_{\mathrm{AW}}$ |  | 0 |  |  | ns |
| Write address retention time | $\mathrm{t}_{\mathrm{WA}}$ |  | 0 |  |  | ns |
| Write pulse width | $\mathrm{t}_{\mathrm{WW}}$ |  | 16 |  |  | ns |
| Data setting time | $\mathrm{t}_{\mathrm{DW}}$ |  | 9 |  |  | ns |
| Data retention time | $\mathrm{t}_{\mathrm{WD}}$ |  | 0 |  |  | ns |
| Reset pulse width | $\mathrm{t}_{\mathrm{RST}}$ |  | $3 \mathrm{t}_{\mathrm{CLK}}$ |  |  | ns |
| Reset operation time | $\mathrm{t}_{\mathrm{RSTM}}$ |  |  |  | $3 \mathrm{t}_{\mathrm{CLK}}$ | ns |

$\mathbf{t}_{\mathbf{C L K}}$ : Reference clock period (Min. 50 ns )

## Clock



## Read cycle

AR- 0


## Write cycle

AR- 0

UR, CS


D7- 0


## Reset cycle

RT


Reset opera at i on


## 11-4-3 Encoder Interface

| Item | Symbol | MIN. | TYP. | MAX. | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Edge interval when phase B edge occurs after phase A edge | $\mathrm{t}_{\mathrm{AB}}$ | $2.5 \mathrm{t}_{\mathrm{CLK}}$ |  |  | ns |
| Edge interval when phase A edge occurs after phase B edge | $\mathrm{t}_{\mathrm{BA}}$ | $2.5 \mathrm{t}_{\mathrm{CLK}}$ |  |  | ns |
| Edge interval when phase A edge occurs after phase A edge | $\mathrm{t}_{\mathrm{AA}}$ | $2.5 \mathrm{t}_{\mathrm{CLK}}$ |  |  | ns |
| Edge interval when phase B edge occurs after phase B edge | $\mathrm{t}_{\mathrm{BB}}$ | $2.5 \mathrm{t}_{\mathrm{CLK}}$ |  |  | ns |

## 2-clock inputs



## 2-phase clock input



## Encoder input count timing (when forward counting is set)

Upward counting


Downward counting

x1 multiplication


## 11-4-4 Input and Output Interface

Pulse output start
A sync start mode


Sync start mode


T: 1 period of startup frequency

## Pulse stop

Setting for completing operation when the pulse output completes.


Setting of completing operation when the positioning has completed.


## 12. Lead-Free Specifications

Generally, reflow temperature increases when mounting components, using lead-free solder paste. Therefore, the package was designed to withstand a reflow temperature of $260^{\circ} \mathrm{C}$ (max.). In addition, reflow is supported up to twice.

Figure 12-1: Lead-Free Specification


Permissible Reflow Profile


This User's Manual describes information as of April 2005. To improve this product, its specifications are subject to change without notice.


[^0]:    Setting for nunber of out put pul ses $\left(R_{1}\right)$ for $X$ axi s
    Set value 0186AOh = 100,000 pul ses

[^1]:    When $X$ axi s is +direction pul se out put

[^2]:    $\mathbf{t}_{\text {CLK }}$ : Reference clock period (Min. 50 ns )

